A Study and Comparative Analysis of Conditional Random Fields for Intrusion Detection
نویسنده
چکیده
Intrusion detection systems are an important component of defensive measures protecting computer systems and networks from abuse. Intrusion detection plays one of the key roles in computer security techniques and is one of the prime areas of research. Due to complex and dynamic nature of computer networks and hacking techniques, detecting malicious activities remains a challenging task for security experts, that is, currently available defense systems suffer from low detection capability and high number of false alarms. An intrusion detection system must reliably detect malicious activities in a network and must perform efficiently to cope with the large amount of network traffic. In this paper we study the Machine Learning and data mining techniques to solve Intrusion Detection problems within computer networks and compare the various approaches with conditional random fields and address these two issues of Accuracy and Efficiency using Conditional Random Fields and Layered Approach.
منابع مشابه
Intrusion Detection Using Conditional Random Fields
Intrusion detection systems have become a key component in ensuring the safety of systems and networks. This paper introduces the probabilistic approach called Conditional Random Fields (CRF) for detecting network based intrusions. In this paper, we have shown results for the issue of accuracy using CRFs. It is demonstrated that high attack detection accuracy can be achieved by using Conditiona...
متن کاملIntrusion Detection Method Based on Fuzzy Conditional Random Fields ?
Intrusion detection system is the indispensable part of every computer. With the increasing attack means, all kinds of intrusion detection methods have appeared. Compared with other intrusion detection methods, the intrusion detection methods based on Conditional Random Fields (CRFs) has better detection effect, but the problems that the accuracy is low when the training data is small and the t...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملA New Algorithm of Network Intrusion Detection base on the Application of Conditional Random Fields
While the network brings convenience to people, its own fragility offers intrusion opportunities for hackers and malicious attackers. Along with the diversity and complexity of intrusion attack, high performance intrusion detection techniques are required, and so the study of on-line detection, adaptive detection and multiclass detection techniques becomes current hotspot. To improve the perfor...
متن کاملRobust and efficient intrusion detection systems
INTRUSION Detection systems are now an essential component in the overall network and data security arsenal. With the rapid advancement in the network technologies including higher bandwidths and ease of connectivity of wireless and mobile devices, the focus of intrusion detection has shifted from simple signature matching approaches to detecting attacks based on analyzing contextual informatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012